Thick and thin points for random recursive fractals
نویسندگان
چکیده
We consider random recursive fractals and prove fine results about their local behaviour. We show that for a class of random recursive fractals the usual multifractal spectrum is trivial in that all points have the same local dimension. However, by examining the local behaviour of the measure at typical points in the set, we establish the size of fine fluctuations in the measure. The results are proved using a large deviation principle for a class of general branching processes which extends the known large deviation estimates for the supercritical Galton-Watson process.
منابع مشابه
On Hausdorff Dimension of Random Fractals
We study random recursive constructions with finite “memory” in complete metric spaces and the Hausdorff dimension of the generated random fractals. With each such construction and any positive number β we associate a linear operator V (β) in a finite dimensional space. We prove that under some conditions on the random construction the Hausdorff dimension of the fractal coincides with the value...
متن کاملMultifractal Decompositions of Digraph Recursive Fractals
We prove that the multifractal decomposition behaves as expected for a family of sets K known as digraph recursive fractals, using measures ^ of Markov type. For each value of a parameter a between a minimum amin and maximum amax, we define 'multifractal components' K^ a) of K, and show that they are fractals in the sense of Taylor. The dimension /(or) of K^ is computed from the data of the pro...
متن کاملRandom Fractals and Tree - Indexed Markov
We study the size properties of a general model of fractal sets that are based on a tree-indexed family of random compacts and a tree-indexed Markov chain. These fractals may be regarded as a generalization of those resulting from the Moran-like deterministic or random recursive constructions considered by various authors. Among other applications, we consider various extensions of Mandelbrot's...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملThe Hausdorff dimension of some snowflake-like recursive constructions
Fractal subsets of Rn with highly regular structure are often constructed as a limit of a recursive procedure based on contractive maps. The Hausdorff dimension of recursively constructed fractals is relatively easy to find when the contractive maps associated with each recursive step satisfy the Open Set Condition (OSC). We present a class of random recursive constructions which resemble snowf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002